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Convex Functions, Harmonic Maps, and the Stability
of Hamiltonian Systems

WILLIAM B. GORDON

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: Trajectories of conservative dynamical systems are particular examples
of harmonic maps. If Y is the configuration space of a dynamical system, then a trajectory
of the system is a harmonic map from the real line into Y. More generally, let Xand Ybe
riemannian manifolds with X compact. We show that the image of any harmonic map f
from X to Y cannot be contained in domains which are too small; specifically, that the
image of any suchf cannot be contained on any domain which supports a convex function.
From a modification of the proof we show that, except in the neighborhoods of certain
exceptional points, a trajectory of a dynamical system cannot lie entirely in any such
domain. This fact leads to criteria for the growth and instability of dynamical systems.

INTRODUCTION

In Part I of this report we announce some results which we have recently obtained in the
theory of harmonic maps, of which a more detailed account with proofs will be given in a forth-
coming paper [1]. Part 11 is devoted to a discussion of some possible applications of these
results to the study of the stability of Hamiltonian systems.

For the convenience of those readers who may wish to go immediately to Part 11 we now
introduce some necessary concepts. Let Y be a smooth riemannian manifold with local coordinates
yi, metric tensor hij, and Christoffel symbols r1,'%. The coefficients of the second-order covariant
differential of a function F with continuous second-order derivatives are given by

a2F a
F,, = ayiay I- iY/

where here, as always, we use the tensor summation convention. We shall say that F is convex
in a domain D of Y iff at every point p of D we have Fi jfif > 0 for every nonzero contravariant
vector A. (In symbols, we shall write (Fi.) > 0 (in D).) A domain D will be said to be convex
supporting iff there exists a convex function F on D. (A more general definition is used in Part
1, section I-A.) Examples of convex-supporting manifolds and domains are given in section I-C
of Part 1, Theorem 3 in section I-B, and remark 2 in section I-A.

Let y = y(t) be a curve on Y. The second-order covariant derivative is given by

D2yi d2y i dyJ dyyk

dt2 dt2 + dt dt

Hence the analytic condition that the curve be a geodesic is given by D2yildt 2 = 0. Let F be a
C2 function, y = y(t) be a curve on Y, and G(t) = F[y(t)]. Then G'(t) =Fi dyildt and G"(t)=FiX
(dyildt)(dyidlt) + Fi(D2yi/dt2 ). Hence, F is convex in a domain D iff for every geodesic y=y(t)
in D we have d 2F[y(t)]Idt 2

>'0.

In Part II we shall show how this notion of convexity leads to Lyapounov-like criteria for
the stability of conservative dynamical systems.
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PART I

Harmonic Maps

1-A. PRELIMINARIES

X and Y will always denote C" riemannian manifolds, and it will always be assumed that
X is compact. Greek (Latin) letters will be used for objects attached to X(Y). Local coordinates
will be written x = (xa), y = (yi), and the corresponding metric tensors, Christoffel symbols,
and curvature tensors will be denoted by g = (gag), h = (hij), AlaY, riik, Rapy SiJkt. Indices of
tensors will be raised and lowered in the usual fashion, and we shall always use the tensor summa-
tion convention.

Let f: X - Y be a C2 map which is locally given by y = y(x). We set

Ha = d~a; Ya = area_ d-~a~y! + -ij/;yjay . (I)

Then y. and yap transform like tensors under coordinate transformations x - i, y - Y. f is said
to be harmonic if grays = 0, (i = I,2,...,di(Y)). For motivation and some results in the theory
of harmonic map see Refs. [2-4]. We recall some basic definitions and results:f is said to be
totally geodesic if f sends geodesics into geodesics or, equivalently, if f*, the differential of
the differential of f, sends the horizontal sub-bundle of TT(X) into the horizontal sub-bundle
of TT( Y). The analytic condition that f be totally geodesic is given by yap = 0. Thus, every
totally geodesic map is harmonic. f is said to be an isometric map iff*g = h; i.e., gag=hijyay;Z.
An isometric map f: X - Y is totally geodesic (hence harmonic) provided di(X) = di(Y). The
composition of two totally geodesic maps is totally geodesic. The composition of a totally geodesic
map with a harmonic map is harmonic according to the following scheme: totally geodesic
harmonic = harmonic. The composition of two harmonic maps is not necessarily harmonic.

A I -orm co = (pi) defined on a domain D of Y will be said to be convex if its covariant differ-
ential is a positive definite form; i.e., if for every p E D and non-zero vector ( E T,,(Y), we
have coi3(p) i ) > 0, where w..j = cW^/eyJ-I'i;w,)b A function F will be said to be convex ifdF
is convex. We write (wij) > 0, ('ij) > 0 to indicate that &o,F are convex. (The reason for using
the strict inequality will be apparent from the proof of Theorem I below.) A manifold Y will be
said to be convex supporting if every domain D and Y with compact closure supports a convex
form. We note the following:

1. A compact manifold Y cannot be convex supporting.

Proof lIet co be any I-form on Y. We can assume that Y is orientable, since otherwise
we could apply the following argument to the lift of ao to the two-leaved orientable cover of Y.
It is well-known that

f h'ij\ 1h dy = 0.

Therefore, w cannot be convex, since this would imply that the integrand is positive.

2. Every point has a convex-supporting neighborhood. For in a coordinate neighborhood
of the point define
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Then

Fij= a ij - E rJy k.

k

Hence, from the continuity of rFj, (Fij) > 0 in some neighborhood of the point.

1-B. STATEMENT OF RESULTS

We shall write Rie (Y) - 0 to indicate that the riemannian sectional curvatures are all non-
positive, and given two 2-forms w,0 we write (wij) > (Oj) to indicate that ()ij - Oij) > 0. We
use Eisenhart's conventions concerning the curvature tensors, so that, in particular, the Ricci
curvature is positive if (-Rij) > 0 [5]. We now present our results.

THEOREM 1. If Y is convex supporting, then every harmonic map from X to Y is necessarily
constant.

THEOREM 2. Suppose 7rI(X) is finite, and that Y has a convex-supporting covering space;
i.e., we suppose there exists a covering Y - Y for which Y is convex supporting with respect
to the lifted metric of Y. Then every harmonic map from X to Y is constant.

Remarks. We recall that 7iT(X) is finite if the universal covering space of X is compact.
Also, we may as well assume that the covering Y - Y is universal, since if it is not, the universal
covering U - Y can be factored through the given covering, and the induced covering U - Y
can be used to lift the convex form on Y to a convex form on U.

THEOREM 3. Suppose Y is complete, simply connected, and that Rie (Y) S 0. Then Y is
convex supporting. In particular, there exists a convex function on Y.

Remark. None of the conditions of this theorem are necessary. In particular, there exist
convex-supporting manifolds Y with Rie (Y) - 0 (see section l-C below).

Before going on to the next theorem, we mention some corollaries. First, note that the
universal covering space of any complete riemannian manifold with non-positive sectional
curvatures satisfies the conditions of Theorem 3. Hence, if 7r1(X) is finite and Y is a complete
manifold with Rie (Y) - 0, then every harmonic map from X to Y is constant.

If the Ricci curvature of X satisfies (-Ran) > X(g,,q) for some positive constant X, then
according to a well-known theorem of Myers, 7r,(X) is finite (see Ref. [6], p. 105), so that the
only harmonic maps from X to a space with a convex-supporting covering are constants. This
condition on the Ricci curvature holds if X, say, is Sn or lPn, n > 2, endowed with the standard
riemannian structures, or if X is a Lie group with trivial center. However, it should be noted
that if the standard metric of any of these manifolds X is replaced with an arbitrary metric, then
it still remains true that every harmonic map from X to a manifold with convex-supporting cover
is necessarily constant.

Remark. These results should be compared with the Corollary on page 124 of Ref. [2]
and also with Ref. [4]. For example, Eells and Sampson show that if Rie (Y) - Oand if the
Ricci curvature of X is non-negative and positive at least at one point, then every harmonic map
from X to Y is constant.

Before stating our next theorem we recall that a map F is said to be proper if F -I (compact) =

compact.

THEOREM 4. Let F be a convex C2 function on a complete manifold Y. Then either F has
no critical points or F has a unique critical point pO. In the latter case F is proper, F(p) > F(pu)
for all other points of p of Y, and Y is contractible.
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PART II

Applications to the Stability of Hamiltonian Systems

I-A. GEODESIC FLOWS

We recall that a riemannian manifold is said to be complete iff every geodesic can be in-
definitely continued, and that this condition holds iff the manifold is complete with respect
to the metric induced on the manifold by the riemannian metric.

THEOREM. Let M be Ca complete riemannian manifold aind let D he a compact domain of
M it'which sapports a convexfimnction F. Then any geodesic which enters D mnust leave D.

Such a geodesic' may course return to D, hut D cannot contain any entire geodesic y(t)
(-% < t < o) or any half-ray y(t) (t a t,,, fir some t,,).)

Proof: Let y = y(t) be a geodesic for which y(t,,) ( D, and suppose that y(t) remains in
D for all t D t,,. Let G(t) = F [-y(t)] and let 6 denote the velocity vector of y. As shown in the
I ntroduction,

C' = Fi i and C" = Fi jei f

Since D is compact, there exists a positive constant X such that the bilinear form (Fij -Xgi)

is positive definite (in D). And since the velocity vector along a geodesic has constant length
(gijfiej = 1), we have G"(t) _ A, t : t,. Hence, G(t) increases without bound ast-er. But this
is impossible since F must be bounded on the compact domain D.

I-B. THE JACOBI METRIC

Let V be a continuously differentiable function on a manifold Y. The trajectories of the
conservative dynamical system arising from the "potential" V are the solutions to the dynamical
equation D2 yi/dt 2 = - hii(aV/dyi). In the special case V = 0, the trajectories are merely the
geodesics of the manifold.

We recall some basic facts about the Jacobi metric [7]. Let H be a constant. The Jacobi
metric hii is defined by

hi = 2(H - V)hi (I)

at points where H - V > 0. It is well known that the geodesics corresponding to this metric are
(re-parametrized) trajectories of the dynamical system with potential V and total energy H.
Hence, a discussion of Hamiltonian systems can be reduced to the case of geodesic flows.

For later reference we note that the Christoffel symbols l"i,. associated with h , are given by

2( I j (,; -.+ 8. d -hir h,,, - (2)2 (H - V) jW ,.a Y.,a

I-C. GENERAL REMARKS ON THE USE OF THE JACOBI METRIC

1. It should be emphasized that the Jacobi metric is constructed for each fixed value of H.
A given function F defined on a fixed domain D may be convex with respect to the Jacobi metric
corresponding to some values of H but not for others.
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2. The Jacobi metric degenerates at those points for which H 3 V. In particular, a trajectory
can converge to a point at which H = V. (See Example 2 below.)

3. Suppose D is a maximal open convex-supporting domain, with compact closure, which
supports a function F which is convex in D and continuous on the closure of D. It is conceivable
that a geodesic which enters D might remain in D (so that it would approach the boundary of D).
Referring to the proof of the theorem, to exclude this possibility it suffices to show that G'(t) - 0
for some t 3 t,,. On the other hand, if such a geodesic remains in D, we must have G' < 0, and
(,(t) must converge to its infimum as t o.

2. EXAMPLES

We give two examples to illustrate the basic calculations involved in these convexity methods.

Example I. The Kepler Problem: Let {Jx} denote standard coordinates and (, ) the standard
inner product on euclidean n-space. Set r2 = (x,x) = Yx2. The potential function for the Kepler
problem is given by

V = ,so that Vi =-= Ci(3)
r axi r (3

Set

F (x) =--r 2 , so that a = xi, d =, (4)2 ' ' ~ai~ axixax1 = k 4

We have hi = 8j, Ii,; = 0. Hence, from (I) and (2),

hi = 2(H - V)8,i (5)

and

= -=2r3(H -V) (.Xiix + 8x, - 8txi). (6)

From the relation

h'iJ = axia- l' ;

we get

i ( 2(I - V )k8 + (r3(H ))xixj = a8i; + b~xixi,

where (,l) = etc.
We wish to determine when (Fi,) > 0( since F/j = Fjj, this reduces to determining the eigen-

values of the matrix M given Mi = /ii= (8ij + bxix,.

Case 1. H _0 (, so that H-V= H + C/r > 0.

Let 6 be an eigenvector with cigenvalue g. Then M6 = ,tt is equivalent to

a + h, (x,C)x = .

6



NRL REPORT 7143

There are (n-I ) independent vectors 6 with (x,() = 0. Hence, a is an eigenvalue of multiplicity
(n- 1). Also,

2(H +Cr) (7)

The remaining solution is given by e = x, in which case (8) reduces to ax + br 2 x=x, so that,
taking the inner product of both sides with x, we get

Au = a + br2 = I + 2H/C/ ) > 3 (8)/1-ar- ~~2(H + CIO) 2~ 8

Hence, if H > 0, the entire space is convex supporting with convex function F. This means
that no trajectory x = x(t) can remain in any compact set for all t greater than any fixed value.
In fact, suppose r = r(t) is bounded below. Then the solution is defined for all t - 0, and from
convexity, G(t) = F [x(t)] must eventually become monotonic; i.e., we have proved the elemen-
tary fact that if H > 0 and r = r(t) is bounded below, then r(t) -* oo as t -. oo.

Case 2. H< 0. In this case the domain D given by r< -C/H is convex supporting, and the
analysis shows that every trajectory which enters D must leave D. (Of course, such trajectories
are ellipses, so that the trajectories return to D.)

Example 2. We consider the motion of a particle constrained to move on an ordinary
2-sphere in the presence of a uniform gravitational field.

Let the embedding of the sphere into euclidean 3-space be given by

w = w(0,f ) = (sin 0 cos f ) e, + (sin 0 sin f ) e2 + (cos 6) e:3,

where e,, e2, e3 are the standard basis vectors in 3-space, 0 = colatitude, p = longitude. The
potential is given by V = cos 0. The force field is directed downward from the north pole (6 = 0)
to the south pole (0 = IT).

Fix a value of H, (H > - 1). Using O,.p as generalized coordinates, it is easy to show that a
trajectory with total energy H is given by the circular orbit

6= 06, (10)
where

co I,, I-3lcos 6ol = 2H

and
2 =-I /COS do .

Note that as a consequence of (I 1) this orbit occurs on the southern hemisphere (6 > 7T/2 ). Let
D be the domain given by

I - 31cos 61 < 2H, 0 > 7r/2.

Presently we shall show that D is convex supporting. We ask whether there exists a trajectory
in D (with energy H) which winds up toward the boundary of D, 6 = 0,,. The answer is "no."
Hence, any trajectory with total energy H which enters D must leave D.

Proof. Let F = F(6,p) = 1/2 (w - e3, w - e3). (Note thatf= I-V.) Direct calculation
gives

7
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Cos_ sin2 0 0

Fo6 2(H -cos 6)
(Fijs) =.

0Fs (c 0 + sin2 / ) sin 2 0I- ~ 02(H - cos 6))

There is some difficulty about the fact that the spherical coordinate system is singular at the
poles, but it is easy to show that D is convex supporing; viz., (-Fij) > 0 in D.

To prove that the non-existence of winding orbits, it suffices to show that d(-F)/dt > 0,
if 0 < 0. But dF/dt = (dwldt, e:3) = d(w,e:,)/dt = d cos O/dt = (-sin 0)0.

Finally, to obtain an example of a trajectory converging to a point at which the Jacobi metric
degenerates, consider the case of a particle initially at rest at the south pole which is given just
enough impetus to move it up to the north pole. We have H = I, H - V= 0 at 0= 0. The equations
of motion are easily solved, and one finds that 0 - e't as t -o.

ADDENDUM

I have recently learned of a paper by Bishop and O'Neill [8] in which the authors establish
several implications of the existence of globally defined convex functions on a manifold (especially
a manifold of non-positive curvature) for the structure of the manifold. Thus, they obtained
Theorems 3 and 4 of this report, and much more besides.
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